Telegram Group & Telegram Channel
Как работает градиентный бустинг для регрессии, и как — для классификации?

Основная идея градиентного бустинга заключается в последовательном добавлении простых моделей (например, деревьев решений) так, чтобы каждая последующая модель корректировала ошибки предыдущих.

🔹Для задачи регрессии алгоритм выглядит так:

▫️Всё начинается с простой начальной предсказательной модели, обычно с использованием среднего значения целевой переменной.
▫️Для каждой модели в ансамбле вычисляется градиент функции потерь по отношению к предсказаниям текущей составной модели. Градиент показывает направление наибольшего увеличения ошибки. Соответственно, следующая модель обучается предсказывать отрицательный градиент предыдущих моделей.
▫️Этот процесс повторяется множество раз. Каждая новая модель улучшает предсказательные способности ансамбля.

🔹Для задачи классификации алгоритм почти такой же:

▫️Меняется предмет предсказания — вместо самих меток классов можно использовать их log-правдоподобие.
▫️Градиент функции потерь вычисляется, основываясь на различиях между фактическими классами и предсказанными вероятностями.
▫️Задачей каждой новой модели в ансамбле является уменьшение ошибки путём улучшения оценки вероятности.
▫️Как и в случае регрессии, каждая последующая модель стремится к уменьшению ошибок предыдущих.

#машинное_обучение



tg-me.com/ds_interview_lib/342
Create:
Last Update:

Как работает градиентный бустинг для регрессии, и как — для классификации?

Основная идея градиентного бустинга заключается в последовательном добавлении простых моделей (например, деревьев решений) так, чтобы каждая последующая модель корректировала ошибки предыдущих.

🔹Для задачи регрессии алгоритм выглядит так:

▫️Всё начинается с простой начальной предсказательной модели, обычно с использованием среднего значения целевой переменной.
▫️Для каждой модели в ансамбле вычисляется градиент функции потерь по отношению к предсказаниям текущей составной модели. Градиент показывает направление наибольшего увеличения ошибки. Соответственно, следующая модель обучается предсказывать отрицательный градиент предыдущих моделей.
▫️Этот процесс повторяется множество раз. Каждая новая модель улучшает предсказательные способности ансамбля.

🔹Для задачи классификации алгоритм почти такой же:

▫️Меняется предмет предсказания — вместо самих меток классов можно использовать их log-правдоподобие.
▫️Градиент функции потерь вычисляется, основываясь на различиях между фактическими классами и предсказанными вероятностями.
▫️Задачей каждой новой модели в ансамбле является уменьшение ошибки путём улучшения оценки вероятности.
▫️Как и в случае регрессии, каждая последующая модель стремится к уменьшению ошибок предыдущих.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/342

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA